OCES 1010 Principles and Applications of Environmental Science (Fall 2022-23)

Learning Outcomes

By the end of this course, the students are expected to be able to:

- 1) demonstrate fundamental understanding of environmental concepts such as Earth's life-supporting systems and biodiversity, natural resources, pollution and mitigation, and their inter-relationships;
- 2) address challenges in environmental science by integrating scientific knowledge, technical applications, and innovative technology;
- 3) identify and describe different scientific methods to critically evaluate complex, emerging environmental problems at global and local scales;
- 4) recognize the importance of harmony between humans and nature in a sustainable living society;
- 5) develop a broad interest in the environment and connect the knowledge to their major study;
- 6) communicate effectively in written format to convey scientific knowledge and the application of modern technologies;
- 7) apply the knowledge in daily life to live more sustainably and to contribute to environmental protection.

Course Format

Two lectures (1.5-hour each) per week.

Course Assessment (<u>TENTATIVE</u>)

- In-class Tests (10%)
- Midterm Exam (40%)
- Final Exam (50%)

Major Reference

Cunningham, W.P. and Cunningham, M.A. (2020) *Principles of Environmental Science: Inquiry and Application*. 9th Edition. McGraw-Hill Companies, Inc.

	Lecture Topic	Instructor
Part 1: Matter & Energy (1) 2) 3)	Chapters 2 & 13) Elements of Life Non-renewable Energy Resources Renewable Energy Resources	
Part 2: Human Population 4) 5) 6)	& Dynamics (Chapter 4) Human Population Dynamics Can we Live Sustainably? Ecological Footprint and Biocapacity Controlling Population Growth	
Part 3: Food Security and 2 7) 8) 9)	Nutrition (Chapter 7) Food Security and Famines Role of Aquaculture in Improving Food Security Green Revolution to Increase Food Supply	
Part 4: Biomes and Biodive 10) 11) 12)	ersity (Chapter 5) Earth's Major Biomes What is Biodiversity and Why is It Important? Threats to Biodiversity	
13)	Midterm Exam	
Part 5: Environmental Hea 14) 15) Part 6: Atmosphere and Po 16) 17)	Alth & Toxicology (Chapter 8) Environmental Health Toxicology and Environmental Toxins Dilution (Chapter 10) Atmospheric Circulation and Climate Global Climate Change	
18)Part 7: Water Resources at 19)	Air Pollution: Acid Rain, Ozone Depletion, Ocean Acidification nd Pollution (Chapter 11) Water Supply, Usage and the Hydrological Cycle	
20) 21) 22)	Water Conservation and Water-Saving Technologies Aquatic Hypoxia and Eutrophication Water Pollution and Remediation	
Part 8: Ocean Plastics 23) 24)	Microplastics: Global and Local Impacts Microplastics: Detection and Removal Technology	
Part 9: Solid Wastes Mana 25) 26)	gement (Chapter 14) Solid Wastes Treatment Solid Wastes Remediation Final Exam	

Chapter numbers refer to those in the major reference by Cunningham and Cunningham (2020).